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2D Scalar Advection-Diffusion Equation

Lc = −κ∆c︸ ︷︷ ︸
diffusion

+ a · ∇c︸ ︷︷ ︸
advection

= f

Advection velocity:
a = (a1, a2)T = |a|(cosφ, sinφ)T .

φ = advection direction.

κ = diffusivity.

Describes many transport phenomena in fluid mechanics:
Heat transfer.
Semi-conductor device modeling.
Usual scalar model for the more challenging Navier-Stokes
equations.

Global Péclet number (L = length scale associated with Ω):

Pe =
rate of advection
rate of diffusion

=
L|a|
κ

= Re ·
{

Pr (thermal diffusion)
Sc (mass diffusion)
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Advection-Dominated Regime

Typical applications: flow is
advection dominated.

Figure 1: Galerkin Q1 solution
(color) vs. exact solution (black) for
Pe = 150

Objective of DEM:

To produce efficiently an
oscillation-free solution.
Alternative to stabilized FEMs
(SUPG, GLS, USFEM).
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The Discontinuous Enrichment Method (DEM)

First developed by Farhat et al. in 2000 [1] for the Helmholtz equation.

Idea of DEM:

Employ as the finite element shape functions the free-space solutions to the
governing homogeneous constant-coefficient PDE Lc = 0.

ch = cE ∈ VE

where
VE = span{c : Lc = 0}

Continuity across element boundaries is enforced weakly using
Lagrange multipliers λh ∈ Wh:

λh ≈ ∇cE
e · ne = −∇cE

e′ · ne′ on Γe,e′

DEM = DGM with Lagrange Multipliers
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Discretization, Implementation & Computational
Complexity

Element matrix problem (uncondensed):(
kEE kEC

kCE 0

)(
cE

λh

)
=

(
rE

rC

)
Due to the discontinuous nature of VE , cE can be

eliminated at the element level by a static condensation

Statically-condensed matrix problem:

−kCE(kEE)−1kECλh = rC − kCE(kEE)−1rE

Static condensation greatly reduces computational complexity!

Complexity depends on number of Lagrange multiplier
approximations per edge.
Sparser global system than FEM.
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Polynomial Enrichment Functions for 2D
Advection-Diffusion

Polynomial free-space solutions to a · ∇cE
n −∆cE

n = 0 (of any desired
degree n) can be derived.

cE
1 (x) = |a× x|

cE
2 (x) = |a× x|2 + 2(a · x)

cE
3 (x) = |a× x|3 + 6|a× x|(a · x)

...

cE
1 (x) cE

2 (x) cE
3 (x)

Slowly-varying (coarse) scale shape functions
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Angle-Parametrized Exponential Enrichment
Functions for 2D Advection-Diffusion

Exponential free-space solutions to a · ∇cE − κ∆cE = 0 can be derived
as well.

cE (x; θi ) = e

(
a1+|a| cos θi

2κ

)
(x−xr,i )e

(
a2+|a| sin θi

2κ

)
(y−yr,i ) (1)

Θc ≡ {θi}nE

i=1 ∈ [0, 2π) = set of angles specifying VE

φ = 0, θi = 0 φ = 0, θi = π
2 φ = 0, θi = 3π

2

Figure 2: Plots of enrichment functions cE (x; θi ) for several values of θi (Pe = 20)

Rapidly-varying (fine) scale shape functions
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Homogeneous Boundary Layer Problem

Ω = (0, 1)× (0, 1), f = 0.

a =
(

cosφ, sinφ
)
.

Dirichlet boundary conditions are specified on
Γ such that the exact solution to the BVP is
given by

cex (x;φ, ψ) =
e

1
2κ {[cosφ+cosψ](x−1)+[sinφ+sinψ](y−1)} − 1

e−
1

2κ [cosφ+cosψ+sinφ+sinψ] − 1

ψ ∈ [0, 2π) : some flow direction (not
necessarily aligned with φ).

Solution exhibits a sharp exponential
boundary layer in the advection direction φ,
whose gradient is a function of the Péclet
number.

Figure 3: φ = ψ = 0

Figure 4: φ = π/7,ψ = 0
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Convergence Analysis & Results (φ = π/7, ψ = 0)

Element
Rate # dofs

of to achieve
convergence 10−3 error

Q1 1.90 63,266
Q-4-1 1.99 14,320

Q2 2.38 24,300
Q-8-2 3.27 5400

Q3 3.48 12,500
Q-12-3 3.88 850

Q4 4.41 8600
Q-16-4 5.19 570

To achieve for this problem the relative error of 0.1% for Pe = 103:
Q-4-1 and Q-8-2 require ≈ 4.5 × fewer dofs than Q1 and Q2

respectively.

⇒ 8× less CPU time.

Q-12-3 and Q-16-4 require ≈ 15 × fewer dofs than Q3 and Q4

respectively.

⇒ 40× less CPU time.
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Solution Plots for Homogeneous BVP
Figure 5: φ = ψ = 0, Pe = 103, ≈ 1600 dofs

Q3

Q-12-3

Figure 6: φ = π/7, ψ = 0, Pe = 105, ≈ 1600 dofs

Q3

Q-12-3
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Extension to Variable-Coefficient Problems
Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

a(x) ≈ ae =constant inside each element Ωe as h→ 0:

{a(x) · ∇c − κ∆c = f (x) in Ω} ≈ ∪nel
e=1{a

e · ∇c − κ∆c = f (x) in Ωe}.

ae ≡
(
−yj − h

2
xj + h

2

)

Ωe

ae′ ≡
(
−yj − h

2
xj + 3h

2

)

Ωe′

xj xj + h xj + 2h

yj

yj + h

�6a(x) =
(
−y, x

)T

Enrichment in each element:

cE
e (x; θe

i ) = e
|ae|
2κ (cosφe+cos θe

i )(x−xe
r,i )e

|ae|
2κ (sinφe+sin θe

i )(y−ye
r,i ) ∈ VE

e
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“Higher Order” Enrichment Function for
Variable-Coefficient Advection-Diffusion

Linearize a(x) to second order, instead of to first order:

a(x) ≈ a(x̄e) +∇a|x=x̄e · (x− x̄e) in Ωe

Enrich with free-space solutions to

[Ax + b] · ∇cE − κ∆cE = 0 (2)

where A ≡ ∇a|x=x̄e , b ≡ (a(x̄e)−∇a|x=x̄e x̄e).

Solutions to (2) are given by:

cE (x) =

∫ vi ·x

0
exp

{
σiw2

2
+ (vi · b)w

}
dw

σi = eigenvalue of ∇a|x=x̄e

vi = eigenvector of ∇a|x=x̄e
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Lid-Driven Cavity Flow Problem

-

6

c = 0

1

c = 1

∂c
∂n = 0

10

y

x∂c
∂n = 0

Ω

Ω = (0,1)× (0,1), f = 0.
a(x) computed numerically by
solving the incompressible
Navier-Stokes equations for
lid-driven cavity flow problem
(stationary sides and bottom,
tangential movement of top).
Advection field reconstructed using
interpolation with bilinear shape
functions φe

i :

ae(ξ) =

# nodes of Ωe∑
i=1

ae
i φ

e
i (ξ)

c(x) represents temperature in
cavity.
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Convergence Analysis & Results (κ = 0.01, Pe ≈ 260)

DEM elements without “higher order”
enrichment outperform Galerkin
comparables.

Further improvement in computation by
adding “higher order” enrichment.

Q2

Q − (4, 5) − 2
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DEM for the Unsteady Advection-Diffusion Equation

Unsteady advection-diffusion equation:

ct + a(x, t) · ∇c − κ∆c = 0

Semi-discrete form of PDE (with semi-implicit Euler) at time n:

cn+1−un

∆t + a · ∇un+1 − κ∆un+1 = 0

Enrichment functions inside each element at time step n are the
free-space solutions to steady analog of the equation above:

VE,n
e = span{un(x) : a(x̄e) · ∇un − κun

xx = 0, x ∈ Ωe}

where

VE,n
e = enrichment field inside element Ωe at time step n

x̄e ≡ midpoint of element Ωe
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Natural Convection in a Differentially-Heated Cavity

Incompressible Navier-Stokes equations with Boussinesq temperature
approximation.

∇ · u = 0
∂u
∂t + u · ∇u− 1

Gr0.5 ∆u = −∇p + T e2
∂T
∂t + u · ∇T − 1

PrGr0.5 ∆T = 0

where
uT = (u1(x, t), u2(x, t)) : fluid velocity vector

p = p(x, t) : fluid pressure
T = T (x, t) : fluid temperature

Ω = (0, 1)2.

No-slip boundary conditions on u on
sides of box.

At time t = 0 begin to heat right wall; top
walls of box are insulating (adiabatic).

Temperature gradient induces
counterclockwise flow field

-

6

T = 0,
u = 0

1

T = 1,
u = 0

∂T
∂n = 0,
u = 0

10

y

x∂T
∂n = 0,
u = 0

Ω

6
�
?
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6

T = 0,
u = 0

1

T = 1,
u = 0

∂T
∂n = 0,
u = 0

10

y

x∂T
∂n = 0,
u = 0

Ω 6
�
?
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Simulation: Galerkin T vs. DGM T (Ra = Gr = 1000)

u, v : Galerkin Q3
p : Galerkin Q2

T : Galerkin Q1 T : DGM Q-4-1
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Summary

Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs
for advection-dominated transport problems in CFD.

Parametrization of exponential basis enables systematic design of DEM
elements of arbitrary orders.

Augmentation of enrichment space with additional free-space solutions
can improve further the approximation.

For all test problems, enriched elements outperform their Galerkin and
stabilized Galerkin counterparts of comparable computational
complexity, sometimes by many orders of magnitude.

In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., non-linear, 3D).

Future work: DEM for incompressible Navier-Stokes.
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Appendix: Computational Complexities

Element Asymptotic Stencil width for (# dofs) × L2 convergence
# of dofs uniform n × n mesh (stencil width) rate (a posteriori)

Q1 nel 9 9nel 2
Q − 4− 1 2nel 7 14nel 2

Q2 3nel 21 63nel 3

DGM with nλ = 2 4nel 14 56nel 3

DEM with nλ = 1 3nel 21 63nel 2− 3

Q3 5nel 33 165nel 4

DGM with nλ = 3 6nel 21 126nel 4

DEM with nλ = 3 5nel 33 165nel 3− 4

Q4 7nel 45 315nel 5

DEM with nλ = 3 7nel 45 315nel 4− 5

Figure 7: Q1 stencil Figure 8: 1st order DGM stencil
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